Exercise 58

(a) Prove that the equation has at least one real root. (b) Use your calculator to find an interval of length 0.01 that contains a root.

$$
\ln x=3-2 x
$$

Solution

Bring both terms to the same side.

$$
\ln x+2 x-3=0
$$

The function $f(x)=\ln x+2 x-3$ is continuous on $(0, \infty)$ because it's the sum of two functions known to be continuous on $(0, \infty)$ and $(-\infty, \infty)$, respectively, a logarithmic function and a polynomial function.

$$
f(x)=0
$$

Find a value of x for which the function is negative, and find a value of x for which the function is positive.

$$
\begin{aligned}
& f(1)=-1 \\
& f(2) \approx 1.69
\end{aligned}
$$

$f(x)$ is continuous on the closed interval [1, 2], and $N=0$ lies between $f(1)$ and $f(2)$. By the Intermediate Value Theorem, then, there exists a root within $1<x<2$. Find other values of x within this interval for which the function is negative and positive.

$$
\begin{aligned}
& f(1.3) \approx-0.138 \\
& f(1.4) \approx 0.136
\end{aligned}
$$

$f(x)$ is continuous on the closed interval [1.3,1.4], and $N=0$ lies between $f(1.3)$ and $f(1.4)$. By the Intermediate Value Theorem, then, there exists a root within $1.3<x<1.4$. Find other values of x within this interval for which the function is negative and positive.

$$
\begin{aligned}
& f(1.34) \approx-0.0273 \\
& f(1.35) \approx 0.000105
\end{aligned}
$$

$f(x)$ is continuous on the closed interval [1.34,1.35], and $N=0$ lies between $f(1.34)$ and $f(1.35)$. By the Intermediate Value Theorem, then, there exists a root within $1.34<x<1.35$.

